Skip to main content

Jet-printed Lithography for Semiconductor Device Fabrication

Buy Article:

$12.00 plus tax (Refund Policy)

Phase-change wax-based printed masks, in place of conventional photoresist masks, were used to fabricate a-Si:H thin-film transistors (TFTs). Printed wax-mask features with a minimum feature size of ∼20 μm were achieved using an acoustic-ink-printing process. Both discrete and matrix addressing structured bottom-gate TFTs with sourcedrain contacts overlapping the channel were created using a four-mask process. The TFTs had I-V characteristics comparable to photolithographically patterned devices, with mobility of 0.6-1 cm2/V·s, threshold voltage of 2-3 V, and on/off ratios exceeding 107 for devices with channel lengths below 50μm. The wax-mask process was also used to fabricate self-aligned TFT devices, eliminating the sourcedrain contact overlap constraint.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 2002-01-01

More about this publication?
  • For more than 30 years, IS&T's series of digital printing conferences have been the leading forum for discussion of advances and new directions in 2D and 3D printing technologies. A comprehensive, industry-wide conference that brings together industry and academia, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems?particularly those involved with additive manufacturing and fabrication?including bio-printing, printed electronics, page-wide, drop-on-demand, desktop and continuous ink jet, toner-based systems, and production digital printing, as well as the engineering capability, optimization, and science involved in these fields. In 2016, the conference changed its name formally to Printing for Fabrication to better reflect the content of the meeting and the evolving technology of printing.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more