Skip to main content

Reinforced Elastomer Roller for Toner Transfer

Buy Article:

$20.00 plus tax (Refund Policy)


In commercial electrophotographic copiers and printers, roll fusing, media handling, and toner transfer are technologies that incorporate friction drive with elastomer-coated rollers. When two rollers form a pressure nip and at least one roller is deformable, the surface strain of the deformed roller defines the length of the nip contact area and the speed of the frictionally driven roller. To insure high levels of performance from sub-systems that utilize friction drive, it is important to maintain consistent surface speeds of rollers forming a nip, under a variety of external noises, such as manufacturer tolerances, lack of roller parallelism, media thickness, media tension, and variable toner stack heights. These noises cause variations in surface strains and subsequently surface speeds, adversely impacting image quality, for example, image-to-page registration, color registration, and fusing nip dwell times.

For an application that utilizes friction drive for toner transfer, an intermediate image-holding roller has been designed to conform radially with little change in shape circumferentially. The presence of a reinforcing layer just below the surface of an elastomer-coated roller enables sufficient nip contact area for electrostatic toner transfer with minimized drive variations due to external noises. The geometry and material properties of the composite roller is optimized with finite element analysis (FEA). Data from overdrive measurements confirm a reduction in speed variation, and results from a toner transfer experiment show suitable performance for high quality color printing.

Document Type: Research Article

Publication date: 2002-01-01

More about this publication?
  • For more than 25 years, NIP has been the leading forum for discussion of advances and new directions in non-impact and digital printing technologies. A comprehensive, industry-wide conference, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems, including drop-on-demand ink jet, wide format ink jet, desktop and continuous ink jet, toner-based electrophotographic printers, production digital printing systems, and thermal printing systems, as well as the engineering capability, optimization, and science involved in these fields.

    Since 2005, NIP has been held in conjunction with the Digital Fabrication Conference.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more