Acoustic Phenomena in a Demand-Mode Piezoelectric Ink-Jet Printer

$20.00 plus tax (Refund Policy)

Buy Article:


This paper addresses acoustic wave propagation in a piezoelectric ink-jet printer. Acoustic resonances limit the operating frequency in inkjet devices and influence the timings of the electrical drive signals. In this study, the resonant frequencies in a multichannel printhead are determined through feedback from the fluid to the piezoelectric structure using an electrical impedance anylyzer. The influence of channel length on resonant frequency is analyzed in a specially constructed printhead. In addition, the effect of different end conditions on the acoustic resonance of the channels was observed.

Because the channels walls are compliant, the propagation of acoustic pressure waves in them is slower than the speed of sound in the fluid, which is a fluid property. The electrical impedance measurements allow the determination of the effective speed of sound in the channel and the optimal timing for the driving electrical signal.

In operation, the drop velocity can be modified by changing the duration of the electrical pulse sent to the piezoelectric actuator. The timing that produces the maximum drop velocity can be also related to the effective speed of sound in the channel. Comparison of the two data sets show that a printhead channel has an acoustical behavior closer to an open-open pipe.

Document Type: Research Article

Publication date: January 1, 2001

More about this publication?
  • For more than 25 years, NIP has been the leading forum for discussion of advances and new directions in non-impact and digital printing technologies. A comprehensive, industry-wide conference, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems, including drop-on-demand ink jet, wide format ink jet, desktop and continuous ink jet, toner-based electrophotographic printers, production digital printing systems, and thermal printing systems, as well as the engineering capability, optimization, and science involved in these fields.

    Since 2005, NIP has been held in conjunction with the Digital Fabrication Conference.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more