Skip to main content

Gamut Mapping in a Composite Color Space

Buy Article:

$12.00 plus tax (Refund Policy)

In recent years, many approaches have been addressed for gamut mapping. Different color spaces and different gamut mapping methods were investigated to improve gamut mapping accuracy or to achieve perceptual pleasing result. The effects of different color spaces (i.e. CIE L*a*b*, CIE L*u*v*, CIECAM97s, Munsell color system, and other non-standard color spaces) on gamut mapping have been addressed in many publications. However, most of these papers are based on gamut mapping in a single color space. Zeng presented a gamut mapping approach using multiple color spaces to solve problems or limitations in gamut mapping in a single color space. By this approach, several color spaces are chosen to perform gamut mapping in different regions to solve some color space problems. In this paper, another approach will be addressed to solve similar color space problems and also to perform some color preference mapping.

Although gamut mapping using multiple color spaces solves some gamut mapping problems, it makes implementation more complicated than gamut mapping using a single color space. It requires a gamut mapping object for each color space, and it also requires additional parameters to decide what color space(s) to select and additional function(s) for smooth transaction from one color space to another. In order to apply the approach of gamut mapping in multiple color spaces but still preserve the simplicity of gamut mapping in a single color space, another approach, which is gamut mapping in a composite color space, was developed. A composite color space is defined as a color space derived from the combination of several color spaces with different weightings in different gamut regions. For the gamut mapping in a composite color space to achieve similar result as that in multiple color spaces, a composite color space and one gamut mapping object are created to replace several gamut mapping objects and transaction functions for gamut mapping. The implementation of gamut mapping in a composite color space is exactly the same as that of gamut mapping in a single color space except that a special color space is applied to replace a regular color space. The composite color spaces that were tested are the linear combinations of standard color spaces, such as CIE L*a*b*, CIE L*u*v*, CIECAM97s, etc.

Our analysis shows that gamut mapping in a composite color space is not mathematically exactly equivalent to the gamut mapping in multiple color spaces. However, very close gamut mapping results are achieved with properly defined transaction functions. Our experimental showed that constructing printer ICC profiles using gamut mapping under a composite color space achieved similar result as that with gamut mapping under multiple color spaces in correcting blue shift problem for monitor RGB to printer CMYK color conversion.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2001-01-01

More about this publication?
  • For more than 30 years, IS&T's series of digital printing conferences have been the leading forum for discussion of advances and new directions in 2D and 3D printing technologies. A comprehensive, industry-wide conference that brings together industry and academia, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems?particularly those involved with additive manufacturing and fabrication?including bio-printing, printed electronics, page-wide, drop-on-demand, desktop and continuous ink jet, toner-based systems, and production digital printing, as well as the engineering capability, optimization, and science involved in these fields. In 2016, the conference changed its name formally to Printing for Fabrication to better reflect the content of the meeting and the evolving technology of printing.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more