Skip to main content

Charge transport modeling in organic light emitting diodes

Buy Article:

$20.00 plus tax (Refund Policy)

Abstract:

We present a microscopic theory of charge transport and electrode injection in otganic light emitting diodes which accounts for most of the molecular aspects of these materials.

The rational optimization of classical semiconductor optoelectronics devices required a good knowledge of the basic transport and light emission processes. The same work should be done in organic devices where charge transport and electrode injection stand as a crucial points for device optimization.

Until now, most of the transport models used in organic light emitting diodes are directly derived from the semiconductor physics of analogous silicon devices [1, 2].

We believe that the physics of transport and charge injection is very different in molecular and polymer materials then in inorganic solids. The reason for this special behavior are related on one side to the large polarisabilities of organic conjugated molecules [3] and to permanent dipoles on part of those of interest [4], and on the other hand on the high electron-phonon interactions leading to the presence of clearly identified polaronic state in polymers [5, 6, 7, 8].

The presence of disorder in most OLED (Organic Light Emitting Diode) materials acts also in synergy with both Coulomb interactions and electron-phonon interactions: a slow carrier in a disordered material interacts with other electrons and dipoles in a much stronger way than a fast one and relaxes the lattice more efficently than a fast one.

Instead of applying the transport results established for the semiconductors, the work of our group aims to develop truly molecular model applicable to soft matter. Some of the aspects of this work is illustrated below.

Document Type: Research Article

Publication date: 2001-01-01

More about this publication?
  • For more than 25 years, NIP has been the leading forum for discussion of advances and new directions in non-impact and digital printing technologies. A comprehensive, industry-wide conference, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems, including drop-on-demand ink jet, wide format ink jet, desktop and continuous ink jet, toner-based electrophotographic printers, production digital printing systems, and thermal printing systems, as well as the engineering capability, optimization, and science involved in these fields.

    Since 2005, NIP has been held in conjunction with the Digital Fabrication Conference.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more