Skip to main content

Dynamics of Jetted Liquid Filaments

Buy Article:

$20.00 plus tax (Refund Policy)

Abstract:

The formation of liquid filaments is a topic of great interest because of its frequent occurrence in a wide variety of engineering applications such as coating, spraying and ink-jet printing technologies. Given the rapid evolution of the latter technology and the everincreasing demand for enhanced resolution, good to excellent printer performances under different operating conditions are deemed necessary. The required performances could be in terms of drop sizes, optical density, color gamut and uniformity and so on. It is well known that critical issues in print quality are imperfections related to the manufacturing of print heads, the uneven spreading of ink on the print media and certainly above all the ability of the inks to be ejected from the print-heads and the evolution in time of the jetted liquid filaments. This last topic is the one which is considered in detail in this paper.

More and more markets are opening towards drop on demand ink-jet printing, ranging from the packaging industry to printing on electronic components. At the same time, there is need to cut down drastically the costs related to numerous and time consuming experiments. For this purpose, we have developed an automated print quality optimization apparatus, which allows us to follow the drop from the exit of the nozzle to drop impact. This device will be briefly discussed and used to follow the full ejection process and to detail the drop formation from pinch-off to the recoiling with eventual secondary breakup.

In this paper, we also focus on the design of the electronic control of jetting by means of a specific wave form generator for ink-jet print-heads. This computer controlled device has a versatile architecture and can be used to drive different print-heads. It proved to be invaluable notably in generating different forms of satellite drops with a given print-head.

Finally, the different measurements which have been performed using the above two devices allow to better quantify the various non-linear hydrodynamic phenomena for the free surface flow under consideration. We show that the framework of dynamic singularities which has been largely used elsewhere to construct similarity solutions for hydrodynamic problems can prove to be helpful in the analysis of the pinch-off phenomenon in DOD ink-jet printing.

Document Type: Research Article

Publication date: January 1, 2001

More about this publication?
  • For more than 25 years, NIP has been the leading forum for discussion of advances and new directions in non-impact and digital printing technologies. A comprehensive, industry-wide conference, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems, including drop-on-demand ink jet, wide format ink jet, desktop and continuous ink jet, toner-based electrophotographic printers, production digital printing systems, and thermal printing systems, as well as the engineering capability, optimization, and science involved in these fields.

    Since 2005, NIP has been held in conjunction with the Digital Fabrication Conference.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
ist/nipdf/2001/00002001/00000001/art00067
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more