Skip to main content

Field-Dependent Mobilities by Field-Inhibited Partial Polaron Formation

Buy Article:

$12.00 plus tax (Refund Policy)

The injection of a charge into an insulator should be accompanied by considerable molecular reorganization and self-trapping. Nonetheless, recently, the effects of polaron formation have been thought to be of secondary importance as compared to the degree to which correlated energetic disorder gives rise to the strongly field-dependent (Poole-Frenkel) mobilities in disordered organic solids. On the other hand, complete molecular relaxation around an isolated charge may take considerable time. In fact, if the relaxation time is longer than the average dwell time, an injected charge will tend to hop from molecule to molecule as a “partial polaron”. Under these circumstances, the mobility is extremely sensitive to small changes, as these may greatly increase or decrease the degree of polaron formation. In this talk we consider the change in mobility arising from an electric field on the order of 1 to 10KV/cm. We show that an apparently insignificant reduction of the “bare” dwell time by the applied field leads to a reduction in polaron formation, which in turn gives rise to an enormous (exponential) increase in mobility.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 01 January 2000

More about this publication?
  • For more than 30 years, IS&T's series of digital printing conferences have been the leading forum for discussion of advances and new directions in 2D and 3D printing technologies. A comprehensive, industry-wide conference that brings together industry and academia, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems?particularly those involved with additive manufacturing and fabrication?including bio-printing, printed electronics, page-wide, drop-on-demand, desktop and continuous ink jet, toner-based systems, and production digital printing, as well as the engineering capability, optimization, and science involved in these fields. In 2016, the conference changed its name formally to Printing for Fabrication to better reflect the content of the meeting and the evolving technology of printing.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more