Skip to main content

Chemical Aging, Charge Transport, and Electroluminescence in Alq3-based Organic Light-Emitting Diodes

Buy Article:

$20.00 plus tax (Refund Policy)


Conduction in aluminum(III) 8-hydroxyquinoline (Alq3) was modeled based on trap-charge limited conduction of electrons in the bulk. The evolution of a narrow Gaussian distribution of localized trap states below the lowest unoccupied molecular orbital (LUMO) of Alq3, lying against a natural exponential background, was used to explain changes in the current-voltage characteristic and external quantum efficiency with time observed by many researchers for organic light-emitting diodes. Based on the change of the shape of the J-V curve, the depth of the electron trap states that were formed during aging was about 0.25 eV below the LUMO of Alq3. An increase in drive voltage and decrease in efficiency is predicted with aging by this model for current densities in a reasonable range, assuming that the evolved trap states are non-emissive and also non-quenching. The products of chemical aging can account for the generation of traps at the observed depth.

Document Type: Research Article

Publication date: January 1, 2000

More about this publication?
  • For more than 25 years, NIP has been the leading forum for discussion of advances and new directions in non-impact and digital printing technologies. A comprehensive, industry-wide conference, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems, including drop-on-demand ink jet, wide format ink jet, desktop and continuous ink jet, toner-based electrophotographic printers, production digital printing systems, and thermal printing systems, as well as the engineering capability, optimization, and science involved in these fields.

    Since 2005, NIP has been held in conjunction with the Digital Fabrication Conference.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more