Skip to main content

Laser Thermal Transfer Printing with Curable Inks

Buy Article:

$12.00 plus tax (Refund Policy)

The semiconductor industry requires high definition, highly legible markings on semiconductor parts which may be made of various materials. The prints must withstand solvents, solder flux, heat, and abrasion without becoming illegible. Gravure printing, the traditional approach, requires wet inks and printing plates and does not offer the flexibility of digital printing. Laser marking is increasingly used and offers digital printing advantages, but legibility of direct laser prints is poor because of lack of satisfactory contrast mechanisms.

We have developed and sold a novel laser thermal transfer marking system for this application which allows dry, high contrast, durable, 500 dot/inch digital prints to be made on silicon, nickel, gold, ceramic and epoxy surfaces. The images are cured with UV or thermal energy. This process required the design of a novel laser printing head which is capable of applying proprietary thermal transfer foil onto small parts while exerting a minimum of force on the parts.

We will present the requirements for the application, some of the technical approaches that were tried for design of the marking engine, and describe the solutions selected.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 01 January 2000

More about this publication?
  • For more than 30 years, IS&T's series of digital printing conferences have been the leading forum for discussion of advances and new directions in 2D and 3D printing technologies. A comprehensive, industry-wide conference that brings together industry and academia, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems?particularly those involved with additive manufacturing and fabrication?including bio-printing, printed electronics, page-wide, drop-on-demand, desktop and continuous ink jet, toner-based systems, and production digital printing, as well as the engineering capability, optimization, and science involved in these fields. In 2016, the conference changed its name formally to Printing for Fabrication to better reflect the content of the meeting and the evolving technology of printing.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more