Skip to main content

Small Polaron Hopping in the Inverted Regime and the Compensation Temperature

Buy Article:

$20.00 plus tax (Refund Policy)


It has been recently shown that the Poole-Frenkel field dependence of the mobility of injected charges in molecuarly doped polymers arises as a natural consequence of the spatially correlated energetic disorder associated with the charge-dipole interaction. Small polaron hopping is compatible with this mechanism for disorder, provided that the polaron binding energy is in a range which is neither too large nor too small; If the binding energy is large, the size of the hopping matrix element which is required to account for the magnitude of the mobility must also be large, and may be unacceptable for an organic solid. If the binding energy is too small, on the other hand, the small polaron rates tend to become “inverted” by the energetic disorder. In this regime there is an increase in the Poole-Frenkel slope with decreasing temperature which may be described by Gill's compensation temperature.

Document Type: Research Article

Publication date: January 1, 1999

More about this publication?
  • For more than 25 years, NIP has been the leading forum for discussion of advances and new directions in non-impact and digital printing technologies. A comprehensive, industry-wide conference, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems, including drop-on-demand ink jet, wide format ink jet, desktop and continuous ink jet, toner-based electrophotographic printers, production digital printing systems, and thermal printing systems, as well as the engineering capability, optimization, and science involved in these fields.

    Since 2005, NIP has been held in conjunction with the Digital Fabrication Conference.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more