Skip to main content

Modelling of Liquid Jet Break-up and Drop Formation

Buy Article:

$20.00 plus tax (Refund Policy)


A liquid jet issuing from a nozzle may break-up into small drops of a variety of sizes when it is subjected to even minute disturbances due to the phenomenon of capillary instability. With the large number of parameters involved in the description of the jet instability, it should be of great interest to solve the governing equations numerically. Several attempts have been made in this direction and are still very active since a detailed numerical investigation of the break-up of a viscous jet requires a very accurate numerical technique. The present work proposes one such technique capable of an efficient computation of the unknown free surface. It is the stream tube method which uses a transformation of the physical domain. The governing equations are then solved by using an optimisation algorithm. An expected advantage of the method is the easiness in introducing elaborate rheological constitutive equations in order to account for complex fluid behaviour. In this paper, we will give the basic features of the stream tube method in the context of an unsteady jet flow and present the procedures allowing to obtain streamlines and kinematic quantities on the jet instability problem.

Document Type: Research Article

Publication date: 1998-01-01

More about this publication?
  • For more than 25 years, NIP has been the leading forum for discussion of advances and new directions in non-impact and digital printing technologies. A comprehensive, industry-wide conference, this meeting includes all aspects of the hardware, materials, software, images, and applications associated with digital printing systems, including drop-on-demand ink jet, wide format ink jet, desktop and continuous ink jet, toner-based electrophotographic printers, production digital printing systems, and thermal printing systems, as well as the engineering capability, optimization, and science involved in these fields.

    Since 2005, NIP has been held in conjunction with the Digital Fabrication Conference.

  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more