Skip to main content

Drop Speeds from Drop-on-Demand Ink-Jet Print Heads

Buy Article:

$17.00 plus tax (Refund Policy)

Abstract

Measured drop speeds from a range of industrial drop-on-demand (DoD) ink-jet print head designs scale with the predictions of very simple physical models and results of numerical simulations. The main drop/jet speeds at a specified stand-off depend on fluid properties, nozzle exit diameter, and print head drive amplitude for fixed waveform timescales. Drop speeds from the Xaar, Spectra Dimatix, and MicroFab DoD print heads tested with (i) Newtonian, (ii) weakly elastic, and (iii) highly shear-thinning fluids all show a characteristic linear rise with drive voltage (setting) above an apparent threshold drive voltage. Jetting, simple modeling approaches, and numerical simulations of Newtonian fluids over the typical DoD printing range of surface tensions and viscosities were studied to determine how this threshold drive value and the slope of the characteristic linear rise depend on these fluid properties and nozzle exit area. The final speed is inversely proportional to the nozzle exit area, as expected from volume conservation. These results should assist specialist users in the development and optimization of DoD applications and print head design. For a given density, the drive threshold is determined primarily by viscosity η, and the constant of proportionality k linking speed with drive above a drive threshold becomes independent of viscosity and surface tension for more viscous DoD fluid jetting: F i n a l _ s p e e d = k × ( D r i v e D r i v e _ T h r e s h o l d ( η ) ) / N o z z l e _ E x i t _ A r e a
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: drop speed; experimental results; fluid; ink-jet print heads; models; nozzle; numerical simulations

Document Type: Research Article

Publication date: 2013-01-01

More about this publication?
  • The Journal of Imaging Science and Technology (JIST) is dedicated to the advancement of imaging science knowledge, the practical applications of such knowledge, and how imaging science relates to other fields of study. The pages of this journal are open to reports of new theoretical or experimental results, and to comprehensive reviews. Only original manuscripts that have not been previously published, nor currently submitted for publication elsewhere, should be submitted.

    IS&T's JIST-first publication option allows authors wishing to present their work at conferences, but have a journal citation for their paper, to submit a paper to JIST that follows the same rigorous peer-review vetting and publication process as traditional JIST articles, but with the benefit of a condensed time-to-publication time frame and guaranteed conference presentation slot.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Terms & Conditions
  • Privacy Policy
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more