Skip to main content

Lifetime Improvement for Full-Width-Array Piezo Ink Jet Print Head Using Matrix Nozzle Arrangement

Buy Article:

$25.00 plus tax (Refund Policy)

Abstract:

Upon driving the unimorph type piezoelectric actuator of an ink jet in a high temperature high humidity environment (38°C//80%), many failures occurred after approximately 1 billion pulses. We hypothesized that the failures occurred due to hydrogen that was generated from the electrolysis of water, causing the piezoelectric element to deteriorate. Based on this hypothesis, we examined electrode materials to reduce the frequency of failures. We found that failure rate can be improved if material with high standard electrode potential is used as the electrode material on the high potential side and material with low standard electrode potential is used on the low potential side, and more specifically, if metal oxide is used for the electrode on the low potential side. Based on these findings, a combination of silver palladium for the electrode on the high potential side and stannous oxide SnxOy for the low potential side was used as the combination of electrode materials that can be formed at low cost. Upon implementing a running test with this combination of electrode materials under a high temperature high humidity environment, we confirmed that failures do not occur even at a continuous drive of 30 billion pulses and that the long-term reliability of the unimorph type piezoelectric actuator improved significantly.

Document Type: Research Article

DOI: http://dx.doi.org/10.2352/J.ImagingSci.Technol.2009.53.5.050305

Affiliations: New Marking Systems Laboratory, Corporate Research Group, Fuji Xerox Co., Ltd., 2274 Hongo, Ebina-shi, Kanagawa 243-0494, Japan

Publication date: September 1, 2009

More about this publication?
  • The Journal of Imaging Science and Technology (JIST) is dedicated to the advancement of imaging science knowledge, the practical applications of such knowledge, and how imaging science relates to other fields of study. The pages of this journal are open to reports of new theoretical or experimental results, and to comprehensive reviews. Only original manuscripts that have not been previously published, nor currently submitted for publication elsewhere, should be submitted.

  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Terms & Conditions
  • Privacy Policy
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more