Skip to main content

Ink Jet Printing for Direct Mask Deposition in Printed Circuit Board Fabrication

Buy Article:

$17.00 plus tax (Refund Policy)

Drop deposition has been studied over a wide range of time scales under conditions relevant to direct printing of etch resist patterns on printed circuit boards. Early-stage impact-driven spreading of 80 pl drops of UV ink and phase change resist was imaged by 20 ns duration flash-based photography, while a 27,000 fps high-speed camera was used to study the later stages of spreading up to 130 ms postimpact. The presence of an attached ligament at impact was shown to reduce the effect of impact inertia and the tendency for recoil, although this was less significant in the later, capillary phase. The effects of surface wetting appeared to be insignificant during the impact and relaxation spreading phases but dominated the behavior during capillary spreading. Cooling by conduction from the substrate was shown to be effective in arresting drop spreading for the phase-change ink on a submillisecond time scale.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: Department of Engineering, University of Cambridge, Cambridge, United Kingdom CB3 0FS

Publication date: 2009-09-01

More about this publication?
  • The Journal of Imaging Science and Technology (JIST) is dedicated to the advancement of imaging science knowledge, the practical applications of such knowledge, and how imaging science relates to other fields of study. The pages of this journal are open to reports of new theoretical or experimental results, and to comprehensive reviews. Only original manuscripts that have not been previously published, nor currently submitted for publication elsewhere, should be submitted.

    IS&T's JIST-first publication option allows authors wishing to present their work at conferences, but have a journal citation for their paper, to submit a paper to JIST that follows the same rigorous peer-review vetting and publication process as traditional JIST articles, but with the benefit of a condensed time-to-publication time frame and guaranteed conference presentation slot.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Terms & Conditions
  • Privacy Policy
  • Information for JIST-First Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more