Skip to main content

Deposition of Molten Ink Droplets on a Solid Surface

Buy Article:

$25.00 plus tax (Refund Policy)

Abstract:

An experimental study on the deposition of micro-size droplets (∼39 μm in diameter) of molten wax ink on an aluminum surface is presented. Effects of initial temperature of droplets, substrate temperature and distance from printhead to substrate on the deposited droplet shape and textures were investigated. Depending on impact conditions, droplets may have either smooth or irregular edges, and the final shape may be either regular or two tiered. Analysis was conducted to compare the time scales for solidification, viscous damping and oscillation. A simple heat transfer model was developed, and temperature dependences of viscosity and surface tension were taken into account. The Ohnesorge number of droplets was investigated as a function of time to compare the transient effects of viscous damping and oscillation of the droplets after impact. The number of oscillations completed before the Ohnesorge number reaches unity agrees with the number of tiers formed. The height of the first tier was related to the value of the Ohnesorge number during the first oscillation. The thermal capillary effect was evaluated by defining and examining two Marangoni numbers for the spreading and post-spreading phases of the droplet impact. Splashing of droplets occurred and produced fingers around the droplet peripheries, which was mainly determined by local solidification and spreading dynamics in the vicinity of contact line.

Document Type: Research Article

DOI: http://dx.doi.org/10.2352/J.ImagingSci.Technol.(2008)52:2(020502)

Affiliations: 1: Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, Canada, M5S 3G8 2: Xerox Corporation, Wilson Center for Research & Technology, 800 Phillips Rd. M/S 114-44D, Webster, New York 14580 3: Xerox Research Centre of Canada, 2660 Speakman Drive, Mississauga, Ontario, Canada, L5K 2L1

Publication date: March 1, 2008

More about this publication?
  • The Journal of Imaging Science and Technology (JIST) is dedicated to the advancement of imaging science knowledge, the practical applications of such knowledge, and how imaging science relates to other fields of study. The pages of this journal are open to reports of new theoretical or experimental results, and to comprehensive reviews. Only original manuscripts that have not been previously published, nor currently submitted for publication elsewhere, should be submitted.

  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Terms & Conditions
  • Privacy Policy
  • ingentaconnect is not responsible for the content or availability of external websites
ist/jist/2008/00000052/00000002/art00006
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more