Skip to main content

Open Access Microarchitectural analysis of a GPU implementation of the Most Apparent Distortion image quality assessment algorithm

Download Article:
 Download
(PDF 762.767578125 kb)
 
Due to the massive popularity of digital images and videos over the past several decades, the need for automated quality assessment (QA) is greater than ever. Accordingly, the impetus on QA research has focused on improving prediction accuracy. However, for many application areas, such as consumer electronics, the runtime performance and related computational considerations are equally as important as the accuracy. Most modern QA algorithms exhibit a large computational complexity. However, the large complexity of these algorithms does not necessarily prohibit their ability of achieving low runtimes if hardware resources are used appropriately. GPUs, which offer a large amount of parallelism and a specialized memory hierarchy, should be well-suited for QA algorithm deployment.

In this paper, we analyze a massively parallel GPU implementation of the most apparent distortion (MAD) full-reference image QA algorithm with optimizations guided by a microarchitectural analysis. A shared memory based implementation of the local statistics computation has yielded 25% speedup over its original implementation. We describe the optimizations that produce the best results. We also justify our optimization recommendations with descriptions of the microarchitectural underpinnings. Although our study focuses on a single algorithm, the image-processing primitives used in this algorithm are fundamentally similar to those used in most modern QA algorithms.

6 References.

No Supplementary Data.
No Data/Media
No Metrics

Keywords: GPGPU; GPU COMPUTING; HETEROGENEOUS PROGRAMMING; IMAGE QUALITY ASSESSMENT; MICROARCHITECTURAL ANALYSIS

Document Type: Research Article

Publication date: 2017-01-29

More about this publication?
  • For more than 30 years, the Electronic Imaging Symposium has been serving those in the broad community - from academia and industry - who work on imaging science and digital technologies. The breadth of the Symposium covers the entire imaging science ecosystem, from capture (sensors, camera) through image processing (image quality, color and appearance) to how we and our surrogate machines see and interpret images. Applications covered include augmented reality, autonomous vehicles, machine vision, data analysis, digital and mobile photography, security, virtual reality, and human vision. IS&T began sole sponsorship of the meeting in 2016. All papers presented at EIs 20+ conferences are open access.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more