Skip to main content

An intralayer pairing mechanism for the coexistence of charge- and spin-density waves induced superconductivity in LaSrCuO

Buy Article:

$43.90 plus tax (Refund Policy)


Starting from an effective two-dimensional dynamic interaction that includes screening of holes as carriers by charge density fluctuations and by optical phonons, we investigate the nature of a d-wave pairing mechanism leading to superconductivity in layered La-based cuprates. We consider the La-Sr-CuO system as an ionic solid containing layers of holes as carriers with a single CuO2 layer in a unit cell, where the localized spins form an antiferromagnetic (AF) order. The electron-phonon interaction matrix element in the case of an ordinary unit cell without the local AF order yields s-wave superconductivity. While for the unit cell with AF order, the wave-vector dependence of the intralayer effective interaction potential shows the sign reversal to create d-wave pairing due to localized antiferromagnetic spin order for the screened phonons. Following the strong coupling theory, the superconducting transition temperature, the isotope exponent, coherence length and magnetic penetration depth are also estimated. The implications of the intralayer pairing model and its analysis are discussed.

Document Type: Miscellaneous

Affiliations: 1: School of Physics, Vigyan Bhawan, Devi Ahilya University, Khandwa Road Campus, Indore 452017, India 2: M P Bhoj (Open) University, Shivaji Nagar, Bhopal 462016, MP, India

Publication date: January 1, 2002


Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more
Real Time Web Analytics