Skip to main content

Models of permeation in ion channels

Buy Article:

$97.98 plus tax (Refund Policy)

Abstract:

Ion channels are formed by specific proteins embedded in the cell membrane and provide pathways for fast and controlled flow of selected ions down their electrochemical gradient. This activity generates action potentials in nerves, muscles and other excitable cells, and forms the basis of all movement, sensation and thought processes in living beings. While the functional properties of ion channels are well known from physiological studies, lack of structural knowledge has hindered development of realistic theoretical models necessary for understanding and interpretation of these properties. Recent determination of the molecular structures of potassium and mechanosensitive channels from x-ray crystallography has finally broken this impasse, heralding a new age in ion channel studies where study of structure-function relationships takes a central stage. In this paper, we present a critical review of various approaches to modelling of ion transport in membrane channels, including continuum theories, Brownian dynamics, and classical and ab initio molecular dynamics. Strengths and weaknesses of each approach are discussed and illustrated with applications to some specific ion channels.

Document Type: Miscellaneous

Affiliations: 1: Department of Theoretical Physics, Research School of Physical Sciences, Australian National University, Canberra, ACT 0200, Australia 2: Department of Physiology and Biophysics, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021-4896, USA

Publication date: January 1, 2001

iop/ropp/2001/00000064/00000011/art00202
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more