Skip to main content

Using Ulam's method to calculate entropy and other dynamical invariants

Buy Article:

$43.90 plus tax (Refund Policy)


Using a special form of Ulam's method, we estimate the measure-theoretic entropy of a triple , where M is a smooth manifold, T is a uniformly hyperbolic map, and is the unique physical measure of T. With a few additional calculations, we also obtain numerical estimates of (i) the physical measure , (ii) the Lyapunov exponents of T with respect to , (iii) the rate of decay of correlations for with respect to test functions, and (iv) the rate of escape (for repellors). Four main situations are considered: T is everywhere expanding, T is everywhere hyperbolic (Anosov), T is hyperbolic on an attracting invariant set (axiom A attractor), and T is hyperbolic on a non-attracting invariant set (axiom A non-attractor/repellor).

Document Type: Miscellaneous

Publication date: January 1, 1999


Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more