Skip to main content

A numerical approach for the analysis of car snail horn performance

Buy Article:

$12.00 plus tax (Refund Policy)

A car horn is a safety device present on every type of vehicle as a warning system. Standard CEE-ECE 70/388 gives the minimum performance requirements in terms of the sound emission a car horn must guarantee outside the vehicle. At the same time, car horns with higher performance are required because of increased noise treatment in the engine compartment. With this in mind, the aim of the proposed research is to optimize and maximize the sound emission of commercial car horns. In this paper, an acoustical finite element model is presented and discussed to determine the cavity modes of the snail horn and to predict the sound pressure emitted outside the horn for an acoustical source excitation. After validation of the proposed numerical approach, the actual geometry of the snail was modified in accordance with an optimization scheme using an automated procedure. The objective of the complete procedure is to increase the emitted sound pressure as well as a set of cavity modes that are well coupled with fundamental working frequencies and with the first harmonic characteristic of the electromagnetic horn housing. Several numerical models are presented and validated against experimental tests
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: 11.4.2; 13.2.1

Document Type: Research Article

Affiliations: Universita degli Studi di Ferrar

Publication date: 2017-06-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more