Skip to main content

Experimental study to determine wind-induced noise and windscreen attenuation effects on microphone response for environmental wind turbine and other applications

Buy Article:

$12.00 plus tax (Refund Policy)

Despite the use of windscreens, the measurement of ambient sound levels or noise emissions in quiet environments can be adversely affected by wind blowing over the microphone. This is especially true when environmental impact assessments are being carried out for proposed wind turbine power projects - where the objective is to determine the level of background masking noise available as a function of wind speed, since any potential noise impact from the project will only occur under moderately windy conditions. Under calm conditions the project will produce no noise at all. A number of windscreen products are commercially available for short and long-term sound level monitoring in adverse weather conditions. Generally, these windscreens vary by physical size and the method of preventing water from reaching the microphone. High frequency attenuation effects are usually available from the product suppliers but, in general, low frequency turbulence effects are not available. Consequently, a controlled laboratory test program was carried out in a state-of-the-art wind tunnel at the Fraunhofer Institut fu¨r Bauphysik in Stuttgart, Germany to quantify the level of low frequency interference (down to 6.3 Hz) associated with a number of different foam windscreens and an aerodynamic microphone nose cone. A total of nine configurations were tested with “quiet” airflow only, artificial noise only and noise plus airflow to evaluate both low frequency wind induced noise and high frequency attenuation effects. The test program demonstrated that the largest size foam-based windscreens provided the most protection from flow induced noise due to wind. Flow induced noise by air flow alone was estimated from the study results and compared to community noise measurements at a typical wind turbine site. It was determined that flow induced wind noise does not have a significant or detrimental effect on the measurement of A-weighted sound levels under wind conditions of concern as long as the suggested measurement techniques described herein are followed.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: 21.6; 71.1.1

Document Type: Research Article

Publication date: 2008-07-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more