Skip to main content

Novel shearing apparatuses in confined flow for investigating recrystallization and fabric evolution processes in mono- and polycrystalline ice

Buy Article:

$35.11 plus tax (Refund Policy)


The orientations of individual crystals within a polycrystalline aggregate subjected to stress have a strong influence on its bulk strain rate and flow behavior. The ability to include the effect of crystal fabric and recrystallization processes in an ice flow law, especially at the bottom of glaciers and ice sheets where temperature is close to the pressure-melting point, is important because the stratigraphy of the ice body may be affected and the paleoclimate reconstruction hampered. We present herein three newly developed deformation apparatuses offering the possibility, from single experiments, of investigating different finite strain stages and their corresponding c-axis fabric and grain texture patterns in various confined, shear flow configurations (simple shear, pure shear and compression/extension bending). The technical set-ups and major advantages compared to classical methods are explained, and results from experiments are discussed in order to illustrate the functioning and purposes of the methods. In all experiments, significant variations in the microstructural development have been observed that reflect the varying orientations of the anisotropy and its relationship to the stress pattern. In monocrystalline ice-bending experiments, the pre-existing c-axis fabric is shown to have a profound influence on the response to stress and possibly to the type of slip system activated.


Document Type: Research Article


Publication date: 2014-02-01

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more