Skip to main content

Dependence of ice-core relative trace-element concentration on acidification

Buy Article:

$35.11 plus tax (Refund Policy)


To assess the role of methodological differences on measured trace-element concentrations in ice cores, we developed an experiment to test the effects of acidification strength and time on dust dissolution using snow samples collected in West Antarctica and Alaska. We leached Antarctic samples for 3 months at room temperature using nitric acid at concentrations of 0.1, 1.0 and 10.0% (v/v). At selected intervals (20 min, 24 hours, 5 days, 14 days, 28 days, 56 days, 91 days) we analyzed 23 trace elements using inductively coupled plasma mass spectrometry. Concentrations of lithogenic elements scaled with acid strength and increased by 100–1380% in 3 months. Incongruent elemental dissolution caused significant variability in calculated crustal enrichment factors through time (factor of 1.3 (Pb) to 8.0 (Cs)). Using snow samples collected in Alaska and acidified at 1% (v/v) for 383 days, we found that the increase in lithogenic element concentration with time depends strongly on initial concentration, and varies by element (e.g. Fe linear regression slope = 1.66; r = 0.98). Our results demonstrate that relative trace-element concentrations measured in ice cores depend on the acidification method used.


Document Type: Research Article


Publication date: February 1, 2014

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more