Skip to main content

Influence of snow type and temperature on snow viscosity

Buy Article:

$35.11 plus tax (Refund Policy)

Abstract:

Three spontaneous avalanches were observed in Lia, Longyearbyen, Svalbard, each occurring naturally under similar temperature conditions. Automatic measurements of temperature inside the snowpack led to examination of the triggering of avalanches in cold conditions following a rapid drop in temperature. The mechanical properties of ice depend on the slab temperature and I ask: could a rapid temperature change affect the mechanical properties differently considering a slab consisting of (1) rounded grains or (2) faceted grains? Snow is considered as a foam of ice crystals, and triaxial deformation tests are performed at constant strain rate to examine the influence of temperature and grain type on the mechanical properties. Although the snow densities in the two sample sets were almost identical, some differences due to grain type were observed. In particular, the set with faceted grain snow started to flow at higher stresses than the set with rounded grains.

Document Type: Research Article

DOI: http://dx.doi.org/10.3189/2013JoG11J231

Publication date: March 1, 2013

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • ingentaconnect is not responsible for the content or availability of external websites
igsoc/jog/2013/00000059/00000213/art00010
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more