If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

The effect of discrete recharge by moulins and heterogeneity in flow-path efficiency at glacier beds on subglacial hydrology

$37.91 plus tax (Refund Policy)

Buy Article:


Subglacial conduit systems are thought to consist of dendritic networks that exist at lower pressure than distributed systems and have locations that are determined by theoretical hydraulic potential. On glaciers with moulins, however, meltwater is delivered to glacier beds at discrete points, violating assumptions of uniform recharge needed to calculate potential. To understand how moulins affect subglacial conduit hydrology, we used speleological techniques to map 0.4 km of subglacial conduit at the base of a moulin in Hansbreen, Svalbard, and compared our observations with theoretical predictions. The conduit began in an area predicted to lack drainage, crossed equipotential contours at oblique rather than right angles and was locally anastomotic rather than dendritic. We propose moulin locations, which are determined by the locations of supraglacial streams and crevasses, control locations of subglacial recharge. Because conduits have no direct causal relationship with gradients in effective pressure, this recharge can form conduits in areas of glacier beds that may not be predicted by hydraulic potential theory to have conduits. Recharge by moulins allows hydraulic head to increase in conduits faster and to higher values than in adjacent distributed systems, resulting in an increase rather than a decrease in glacier sliding speeds above subglacial conduits.

Document Type: Research Article

DOI: http://dx.doi.org/10.3189/2012JoG11J189

Publication date: September 1, 2012

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more