Skip to main content

Ice deformed in compression and simple shear: control of temperature and initial fabric

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.


Layered and polycrystalline ice was experimentally deformed in general shear involving axial compression (strain magnitude 0.5–17%) and simple shear (strain magnitude γ = 0.1–1.4). As the temperature is increased from −20°C to −2°C, there is at least a twofold enhancement in octahedral shear strain rate, which coincides with the onset of extensive dynamic recrystallization and a change in grain-size distribution at −15°C. Between −15°C and −10°C the c-axis preferred orientation rapidly evolves with the initiation of two-maxima fabrics in shear zones. From −10°C to −2°C there is progressive evolution of a final c-axis pattern that is asymmetric with respect to the direction of shortening, with a strong maximum at ∼5° to the pole of the shear zone, a sense of asymmetry in the direction of the shear, and a secondary maximum inclined at ∼45° to the plane of shearing. An initial c-axis preferred orientation plays a critical role in the initial mechanical evolution. In contrast to established ideas, a strong alignment of basal planes parallel to the plane of easy glide inhibited deformation and there was an increased component of strain hardening until recrystallization processes become dominant.

Document Type: Research Article


Publication date: 2012-02-01

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more