Skip to main content

Distribution of debris thickness and its effect on ice melt at Hailuogou glacier, southeastern Tibetan Plateau, using in situ surveys and ASTER imagery

Buy Article:

$35.11 plus tax (Refund Policy)


Debris cover is widely present in glacier ablation areas of the Tibetan Plateau, and its spatial distribution greatly affects glacier melt rates. High-resolution in situ measurements of debris thickness on Hailuogou glacier, Mount Gongga, southeastern Tibetan Plateau, show pronounced inhomogeneous debris distribution. An analysis of transverse and longitudinal profiles indicates that the ground-surveyed debris thicknesses and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)-derived thermal resistances of debris layers correlate strongly over the entire ablation area. Across- and along-glacier patterns of ASTER-derived thermal resistance correspond well with spatial patterns of debris thickness, which may reflect large-scale variations in the extent and thickness of the debris cover. The ice melt rate variability over the ablation area simulated by a surface energy-balance model that considered thermal resistance of the debris layer indicates clearly the crucial role of debris and its spatial continuity in modifying the spatial characteristics of melt rates. Because of the inhomogeneous distribution of debris thickness, about 67% of the ablation area on Hailuogou glacier has undergone accelerated melting, whereas about 19% of the ablation area has experienced inhibited melting, and the sub-debris melt rate equals the bare-ice melt rate in only 14% of the ablation area.

Document Type: Research Article


Publication date: December 1, 2011

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more