If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Analysis of critical length measurements for dry snow slab weak-layer shear fracture

$37.91 plus tax (Refund Policy)

Buy Article:

Abstract:

Snow slab avalanches primarily release by propagation of shear fractures within thin weak layers under much thicker slabs. In some cases, the weak layer is on the order of 1 mm thick and such fractures may be considered to be a mode II shear fracture at initiation. In the cases analysed in this paper, the weak layer has finite thickness, and slope-normal effects may be present. Field data from >500 snow shear fracture tests are analysed and applied to the problem of weak-layer fracture. The paper contains a detailed analysis using a simple analytical model to estimate the critical length prior to an unstable shear fracture. The model contains the assumption of a finite fracture process zone which may be a significant fraction of the slab depth, D, or the critical length, L, for weak-layer shear fracture. The field results show that the L/D ratio varies from ~0.1 to just over 2, and the model results are close to the same range. The analysis also shows that both the field and model results for L/D follow a Gumbel probability density function. Since the experimental field data contain rate-dependent (viscoelastic) and slope-normal effects, it is imperative to account for these in the model and for snow slab instability evaluation when using test data. Detailed evaluations considering both these effects are given. The applicability of the test data to avalanche release is discussed.

Document Type: Research Article

DOI: http://dx.doi.org/10.3189/002214311796905541

Publication date: June 1, 2011

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more