The atmospheric snow-transport model: SnowDrift3D

$35.99 plus tax (Refund Policy)

Buy Article:


SnowDrift3D, a high-resolution, atmospheric snow-transport model, is presented for the first time. In contrast to most state-of-the-art snowdrift models, atmospheric particle transport, i.e. saltation and suspension, is accounted for by one passive transport equation. The model uses unsteady wind fields (spatial resolution of up to 2 m) computed with an atmospheric computational fluid dynamics model that is directly connected to the numerical weather prediction model ALADIN. Sensitivity runs show that (1) the saltation mass flux is a function of cubic shear velocity, u * 3, (2) the model is marginally sensitive to the grid spacing at high resolutions (up to 2 m), (3) the model computes the redistribution of snow at high resolution in real time on dual core personal computers and (4) the changing topography of the snow cover should be included in cases of local erosion or deposition of a large amount of snow. Finally, we present a comparison of modeled and measured snow distributions obtained by terrestrial laser scanning showing area-wide linear correlation up to R = 0.33.

Document Type: Research Article


Publication date: June 1, 2011

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more