Skip to main content

Effects of flow regime and sensor geometry on snow avalanche impact-pressure measurements

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.


Impact pressures of snow avalanches have been measured at the Swiss VallĂ©e de la Sionne experimental test site using two kinds of sensor placed at different locations in the avalanche flow. Pressures measured in a fast dry-snow avalanche and a slow wet-snow avalanche are compared and discussed. The pressures recorded using the two types of sensor in the dense flow of a dry-snow avalanche agree well, showing negligible dependence on the measurement device. On the other hand, significantly different pressures are measured in the slow dense flow of a wet-snow avalanche. This is attributed to the slow drag and bulk flow of this type of avalanche, leading to the formation and collapse of force-chain structures against the different surfaces of the sensors. At a macroscopic scale, limit state analysis can be used to explain such a mechanism by a shear failure occurring between freely flowing snow and a confined snow volume against the sensor, according to a Mohr–Coulomb failure criterion. The proposed model explains (1) how impact pressure can be up to eight times higher than hydrostatic snow pressure in wet cohesive slow avalanches and (2) its dependence on sensor geometry.

Document Type: Research Article


Publication date: 2011-04-01

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.

    Beginning in 2016, content will be available at
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more