Skip to main content

Warming, glacier melt and surface energy budget from weather station observations in the Melville Bay region of northwest Greenland

Buy Article:

$35.11 plus tax (Refund Policy)


The glaciers in the Melville Bay region of northwest Greenland have shown a mean retreat since the earliest observations at the beginning of the 20th century. The largest, Steenstrup Gletscher, has retreated ~20 km, partly during the period of atmospheric cooling 1940–80. Melville Bay airtemperature observations starting in 1981 indicate a regional change of +0.20°C a–1. This exceeds the warming on the east coast of Greenland, confirming the west coast to be a region of relatively large change, also in a global perspective. The largest temperature increase is observed in the winter months (0.3–0.4°C a–1). Results from a 4 year (2004–08) net ablation record obtained by an automatic weather station (AWS) near the calving front of Steenstrup Gletscher show an ablation rate that is relatively low for a low-elevation position on the Greenland ice sheet (2.4 m ice equivalent per year). A first-order estimate from positive degree-day totals suggests that net ablation has roughly doubled since the 1980s. A surface energy and mass-balance model is applied to the Steenstrup AWS data to quantify the energy flux contributions to surface melt. Solar radiation is the main source for melt energy, but, due to shortwave radiation penetration into the ice, only one-third of the melt takes place at the glacier surface; nearly two-thirds occurs within the upper ice layers.

Document Type: Research Article


Publication date: April 1, 2011

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more