Skip to main content

A variationally derived, depth-integrated approximation to a higher-order glaciological flow model

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.


An approximation to the first-order momentum balance with consistent boundary conditions is derived using variational methods. Longitudinal and lateral stresses are treated as depth-independent, but vertical velocity gradients are accounted for both in the nonlinear viscosity and in the treatment of basal stress, allowing for flow over a frozen bed. A numerical scheme is presented that is significantly less computationally expensive than that of a fully three-dimensional (3-D) solver. The numerical solver is subjected to the ISMIP-HOM experiments and experiments involving nonlinear sliding laws, and results are compared with those of 3-D models. The agreement with first-order surface velocities is favorable down to length scales of 10 km for flow over a flat bed with periodic basal traction, and ∼40 km for flow over periodic basal topography. from expanding the full-Stokes equations in aspect ratio and

Document Type: Research Article


Publication date: 2011-03-01

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.

    Beginning in 2016, content will be available at
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more