Skip to main content

The crossover stress, anisotropy and the ice flow law at Siple Dome, West Antarctica

Buy Article:

$35.11 plus tax (Refund Policy)

Abstract:

We used observations and modeling of Siple Dome, West Antarctica, a ridge ice divide, to infer the importance of linear deformation mechanisms in ice-sheet flow. We determined the crossover stress (a threshold value of the effective deviatoric stress below which linear flow mechanisms dominate over nonlinear flow mechanisms) by combining measurements of ice properties with in situ deformation rate measurements and a finite-element ice flow model that accounts for the effects of viscous anisotropy induced by preferred crystal-orientation fabric. We found that a crossover stress of 0.18 bar produces the best match between predicted and observed deformation rates. For Siple Dome, this means that including a linear term in the flow law is necessary, but generally the flow is still dominated by the nonlinear (Glen; n = 3) term. The pattern of flow near the divide at Siple Dome is also strongly affected by crystal fabric. Measurements of sonic velocity, which is a proxy for vertically oriented crystal fabric, suggest that a bed-parallel shear band exists several hundred meters above the bed within the Ice Age ice.

Document Type: Research Article

DOI: http://dx.doi.org/10.3189/002214311795306619

Publication date: February 1, 2011

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • ingentaconnect is not responsible for the content or availability of external websites
igsoc/jog/2011/00000057/00000201/art00004
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more