Skip to main content

Creep and plasticity of glacier ice: a material science perspective

Buy Article:

$35.11 plus tax (Refund Policy)

Abstract:

Major advances in understanding the plasticity of ice have been made during the past 60 years with the development of studies of the flow of glaciers and, recently, with the analysis of deep ice cores in Antarctica and Greenland. Recent experimental investigations clearly show that the plastic deformation of the ice single crystal and polycrystal is produced by intermittent dislocation bursts triggered by long-range interaction of dislocations. Such dislocation avalanches are associated with the formation of dislocation patterns in the form of slip lines and slip bands, which exhibit long-range correlations and scale invariance. Long-range dislocation interactions appear to play an essential role in primary creep of polycrystals and dynamic recrystallization. The large plastic anisotropy of the ice crystal is at the origin of large strain and stress heterogeneities within grains. The use of full-field approaches is now a compulsory proceeding to model the intracrystalline heterogeneities that develop in polycrystals. Ice is now highly regarded among the materials science community. It is considered a model material for understanding deformation processes of crystalline materials and polycrystal modeling.

Document Type: Research Article

DOI: http://dx.doi.org/10.3189/002214311796406185

Publication date: December 1, 2010

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
igsoc/jog/2010/00000056/00000200/art00010
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more