Skip to main content

Spatio-temporal variability in elevation changes of two high-Arctic valley glaciers

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Abstract:

Uncertainties in estimates of glacier and ice-cap contribution to sea-level rise exist in part due to poor quantification of mass-balance errors, particularly those resulting from extrapolation of sparse measurements. Centre-line data are often assumed to be representative of the glacier as a whole, with little attention paid to extrapolation errors or their effect on mass-balance estimates. Here we present detailed digital elevation model (DEM) measurements of glacier-wide elevation changes over the last ∼40 years at two glaciers on Svalbard, Norwegian Arctic. Austre Brøggerbreen and Midtre Lovénbreen are shown to have lost 27.54±0.98 and 9.65±0.76×107m3 of ice, respectively, between 1966 and 2005, findings that we relate to trends in average summer air temperatures and winter accumulation. These volume losses correspond to geodetic balances of −0.58±0.03 and −0.41±0.03 m w.e.a−1, respectively. Our analysis revealed high spatial complexity in patterns of elevation change, varying between glaciers, between measurement intervals and within and between elevation bins. Balances from extrapolated centre-line geodetic data were the same (within errors) as those from full-coverage DEM differencing in the majority of comparisons, yet significantly underestimated balance in three instances. Additionally, field mass balance from centre-line ablation stake data underestimated balances from full-coverage geodetic measurements during three of six measurement periods. These findings may support the hypothesis that field measurements underestimate Svalbard glacier mass loss, at least partly as a result of the failure of centre-line measurements to account for glacier-wide variations in ablation. Our results demonstrate the importance of deriving accurate interpolation functions and constraining extrapolation errors from sparse measurements.

Document Type: Research Article

DOI: https://doi.org/10.3189/002214310794457362

Publication date: 2010-12-01

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.

    Beginning in 2016, content will be available at https://www.cambridge.org/core/journals/journal-of-glaciology.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more