Skip to main content

The importance of considering depth-resolved photochemistry in snow: a radiative-transfer study of NO2 and OH production in Ny-Ålesund (Svalbard) snowpacks

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.


Solar visible radiation can penetrate 2–30 cm (e-folding depth) into snowpacks and photolyse nitrate anions and hydrogen peroxide contained in the snow. Photolysis rate coefficients, J, for NO3 and H2O2 photolysis are presented for a melting and a fresh snowpack at Ny-Ålesund, Svalbard. Calculations of (a) transfer velocities, and molecular fluxes of gaseous NO2 from the snowpack and (b) depth-integrated production rates of OH radicals within the snowpack are presented. The results show the importance of considering the depth dependence, i.e. not just the snow surface, when modelling snowpack photochemistry. Neglecting photochemistry under the snow surface can result in an apparent larger molecular flux of NO2 from NO3 photolysis than the melting snowpack. However, when the depth-resolved molecular fluxes of NO2 within the snowpack are calculated, a larger NO2 flux may be apparent in the melting snowpack than the fresh snowpack. For solar zenith angles of 60°, 70° and 80° the modelled molecular fluxes of NO2 from fresh snowpack are 11.6, 5.6 and 1.7 nmol m−2 h−1, respectively, and those for melting snowpack are 19.7, 9.1 and 2.9 nmol m−2 h−1, respectively.

Document Type: Research Article


Publication date: 2010-10-01

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.

    Beginning in 2016, content will be available at
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more