Skip to main content

The impact of topographically forced stationary waves on local ice-sheet climate

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.


A linear two-level atmospheric model is employed to study the influence of ice-sheet topography on atmospheric stationary waves. In particular, the stationary-wave-induced temperature anomaly is considered locally over a single ice-sheet topography, which is computed using the plastic approximation. It is found that stationary waves induce a local cooling which increases linearly with the ice volume for ice sheets of horizontal extents smaller than ∼1400 km. Beyond this horizontal scale, the dependence of stationary-wave-induced cooling on the ice volume becomes gradually weaker. For a certain ice-sheet size, and for small changes of the surface zonal wind, it is further shown that the strength of the local stationary-wave-induced cooling is proportional to the basic state meridional temperature gradient multiplied by the vertical stratification in the atmosphere. These results are of importance for the nature of the feedback between ice sheets and stationary waves, and may also serve as a basis for parameterizing this feedback in ice-sheet model simulations (e.g. through the Pleistocene glacial/interglacial cycles).

Document Type: Research Article


Publication date: 2010-08-01

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.

    Beginning in 2016, content will be available at
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more