Skip to main content

Consistent approximations and boundary conditions for ice-sheet dynamics from a principle of least action

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Abstract:

The formulation of a physical problem in terms of a variational (or action) principle conveys significant advantages for the analytical formulation and numerical solution of that problem. One such problem is ice-sheet dynamics as described by non-Newtonian Stokes flow, for which the variational principle can be interpreted as stating that a measure of heat dissipation, due to internal deformation and boundary friction, plus the rate of loss of total potential energy is minimized under the constraint of incompressible flow. By carrying out low-aspect-ratio approximations to the Stokes flow problem within this variational principle, we obtain approximate dynamical equations and boundary conditions that are internally consistent and preserve the analytical structure of the full Stokes system. This also allows us to define an action principle for the popular first-order or 'Blatter–Pattyn' shallow-ice approximation that is distinct from the action principle for the Stokes problem yet preserves its most important properties and elucidates various details about this approximation. Further approximations within this new action functional yield the standard zero-order shallow-ice and shallow-shelf approximations, with their own action principles and boundary conditions. We emphasize the specification of boundary conditions, which are problematic to derive and implement consistently in approximate models but whose formulation is greatly simplified in a variational setting.

Document Type: Research Article

DOI: https://doi.org/10.3189/002214310792447851

Publication date: 2010-08-01

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.

    Beginning in 2016, content will be available at https://www.cambridge.org/core/journals/journal-of-glaciology.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more