Skip to main content

Stochastic reconstruction of the microstructure of equilibrium form snow and computation of effective elastic properties

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.


Three-dimensional geometric descriptions of microstructure are indispensable to obtain the structure–property relationships of snow. Because snow is a random heterogeneous material, it is often helpful to construct stochastic geometric models that can be used to model physical and mechanical properties of snow. In the present study, the Gaussian random field-based stochastic reconstruction of the sieved and sintered dry-snow sample with grain size less than 1 mm is investigated. The one- and two-point correlation functions of the snow samples are used as input for the stochastic snow model. Several statistical descriptors not used as input to the stochastic reconstruction are computed for the real and reconstructed snow to assess the quality of the reconstructed images. For the snow samples and the reconstructed snow microstructure, we also estimate the mechanical properties and the size of the associated representative volume element using numerical simulations as additional assessment of the quality of the reconstructed images. The results indicate that the stochastic reconstruction technique used in this paper is reasonably accurate, robust and highly efficient in numerical computations for the high-density snow samples we consider.

Document Type: Research Article


Publication date: 2010-08-01

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.

    Beginning in 2016, content will be available at
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more