Skip to main content

Rapid quantification of cryoconite: granule geometry and in situ supraglacial extents, using examples from Svalbard and Greenland

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.


Supraglacial dust (cryoconite) is an important but poorly understood component of the glacial system. There is a lack of primary data on cryoconite form, extent and dynamics. Here we present a suite of rapid, low-cost methodologies for quantification of granule geometry and supraglacial cryoconite coverage using image data captured by commercially available digital cameras. We develop robust, transferable protocols for analysis of (1) cryoconite granule geometry (major axis, Feret diameter, circularity); (2) centimetre–metre scale supraglacial extent (m2cryoconite m−2surface); and (3) temporal change in supraglacial extent at hourly intervals over several days. Image-processing methodologies were developed using the public domain software ImageJ. Manual (supervised) controls were used to estimate sources of error, and measurements then automated using simple scripting tools (macros). Fully automated processing successfully identified ∼90% of a sample of isolated granules ranging between 2.5 and 39.2 mm, with uncertainties of <20%. Particle sphericity (inferred from circularity) decreased as particle size increased. Supraglacial cryoconite extent was obtained with a mean uncertainty of 37% and 22% for data from field sites in Greenland and Svalbard, respectively. These methods will facilitate acquisition and analysis of datasets for cryoconite across a range of spatial scales, supporting research into cryoconite impacts on supraglacial hydrological connections, nutrient and carbon cycling, and initiation of primary succession in deglaciating environments.

Document Type: Research Article


Publication date: 2010-06-01

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more