Skip to main content

Backwasting rate on debris-covered Koxkar glacier, Tuomuer mountain, China

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.


A physically based energy-balance model with improved parameterization of solar radiation for a sloped ice surface has been developed to estimate the backwasting rate of an ice cliff in a debris-covered area. The model has been tested against observations between 5 August and 5 September 2008 on 38 ice cliffs in the debris-covered area of Koxkar glacier, Tuomuer mountain, China. We calculated that the energy-balance model gave a good estimate of the backwasting rates, with errors in the range ±1.96 cm d−1 and root-mean-square errors of 0.99 cm d−1. Errors arising from setting of surface albedo and turbulent flux parameterization were limited. We found that shortwave radiation is the most important heat source for ice-cliff ablation, contributing about 76% of the total heat available for ice melt, while the sensible heat flux provides nearly 24% of the total heat for ice-cliff wastage. The latent heat flux and net longwave radiation are comparatively small according to the model calculation. The mean backwasting rate of ice cliffs in the debris-covered area of Koxkar glacier is estimated at 7.64 m a−1 when the winter ablation is neglected. With this annual backwasting rate and given a mean slope angle of 46.4°, the backwasting of ice cliffs produces about 1.60 × 106 m3 of meltwater, accounting for about 7.3% of the total melt runoff from the debris-covered area.

Document Type: Research Article


Publication date: 2010-06-01

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more