Skip to main content

Modelled mass balance of Xibu glacier, Tibetan Plateau: sensitivity to climate change

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Abstract:

Due to a lack of in situ measurements, model-based studies of glacier mass balance in the Tibetan Plateau are very limited. An energy-balance model is applied to analyse the mass-balance sensitivity of Xibu glacier, in the Nyainqêntanglha mountain range, to climatic change. A sensitivity calculation shows that a temperature change of ±1°C or a precipitation change of ±35% changes the equilibrium-line altitude (ELA) by 140±125 m. We use a clustering method to link local weather parameters, including wet-season temperatures, to weather types observed over the period 1955–2006. Modelled variability of the Xibu glacier mass balance seems to be controlled by air-temperature variations during the wet season (May–September) and by a long-term warming trend that is unrelated to weather type. The observed wet-season temperature trend of 0.23°C (10 a)−1 leads to an estimated lengthening of the ablation season by 8 days at the glacier terminus (5000 m a.s.l.) and by 23 days at the ELA (5590 m a.s.l.) over the period 1966–2005. The calculated rise in the ELA was 49 m (10 a)−1.

Document Type: Research Article

DOI: https://doi.org/10.3189/002214310791968467

Publication date: 2010-06-01

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.

    Beginning in 2016, content will be available at https://www.cambridge.org/core/journals/journal-of-glaciology.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more