Skip to main content

Application of borehole optical televiewing to investigating the 3-D structure of glaciers: implications for the formation of longitudinal debris ridges, midre Lovénbreen, Svalbard

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.


Digital optical televiewing (OPTV) of hot-water-drilled boreholes is evaluated as a technique for the investigation of englacial ice and debris structures on the basis of six boreholes drilled in the terminus region of midre Lovénbreen, Svalbard. The resulting OPTV logs successfully reveal several visually distinctive englacial ice properties and deformation structures (e.g. oblique englacial fractures imaged here for the first time). Combining these OPTV logs with surface mapping has resulted in the identification of eight separate structural elements, several of which can be interpolated onto 3-D grids at a node spacing of 1 m vertically and 10 m horizontally. Basally derived englacial sediment layers are also found to be intercalated with primary stratification, elevated into near-vertical planes around a central fold axis by large-scale lateral folding. The analysis also allows supraglacial longitudinal debris ridges to be subclassified into two types: a previously described (type-I) form, which are the exposed fold axes of large-scale lateral folds, and a new (type-II) form experiencing secondary deformation by small-scale horizontal folding in association with vertical displacements across arcuate shear planes in response to longitudinally compressive stresses near the glacier terminus. Although using boreholes to investigate glacier structure is limited (e.g. by parallelism with vertical planes), applying OPTV to multiple boreholes at midre Lovénbreen has successfully revealed a range of 3-D structural elements at high spatial resolution. As such, interpolating between multiple OPTV logs overcomes many of the problems associated with interpretations made solely on the basis of surface-based structural mapping, and combining the two techniques represents a powerful glaciological tool.

Document Type: Research Article


Publication date: 2010-04-01

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.

    Beginning in 2016, content will be available at
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more