Skip to main content

A peak-capturing measurement circuit for detecting and recording short-duration glacial signals

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.


A simple circuit has been developed to allow measurement of brief subglacial water-pressure pulses. This circuit continuously powers a pressure transducer and captures the peak output of the transducer during each measurement interval, thus allowing determination of the maximum pressure attained during the interval. This circuit provides an alternative to setting a data logger to perform rapid repeated measurements, and overcomes some key limitations imposed by rapid measurement. Benefits include significantly lower demands on the data-logger microprocessor, which allows additional instruments to be monitored simultaneously, reduced memory usage and moderately lower power consumption. The reduced microprocessor and memory loads allow older and slower logger models, many of which are still in common use, to be used to obtain data that compare favourably with high-frequency data obtained using newer data loggers.

Document Type: Research Article


Publication date: 2010-04-01

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.

    Beginning in 2016, content will be available at
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more