Skip to main content

Towards radiocarbon dating of ice cores

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Abstract:

A recently developed dating method for glacier ice, based on the analysis of radiocarbon in carbonaceous aerosol particles, is thoroughly investigated. We discuss the potential of this method to achieve a reliable dating using examples from a mid- and a low-latitude ice core. Two series of samples from Colle Gnifetti (4450 m a.s.l., Swiss Alps) and Nevado Illimani (6300 m a.s.l., Bolivian Andes) demonstrate that the 14C ages deduced from the water-insoluble organic carbon fraction represent the age of the ice. Sample sizes ranged between 7 and 100 g carbon. For validation we compare our results with those from independent dating. This new method is thought to have major implications for dating non-polar ice cores in the future, as it provides complementary age information for time periods not accessible with common dating techniques.

Document Type: Research Article

DOI: https://doi.org/10.3189/002214309790794922

Publication date: 2009-12-01

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.

    Beginning in 2016, content will be available at https://www.cambridge.org/core/journals/journal-of-glaciology.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more