Skip to main content

Improving surface boundary conditions with focus on coupling snow densification and meltwater retention in large-scale ice-sheet models of Greenland

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Abstract:

Snowpack changes during the melt season are often not incorporated in modelling studies of the surface mass balance of the Greenland ice sheet. Densification of snow accelerates when meltwater is present, due to percolation and subsequent refreezing, and needs to be incorporated in ice-sheet models for ablation calculations. In this study, simple parameterizations to calculate surface melt, snow densification and meltwater retention are included as surface boundary conditions in a large-scale ice-sheet model of Greenland. Coupling the snow densification and meltwater-retention processes achieves a separation of volume and mass changes of the surface layer, in order to determine the surface melt contribution to runoff. Experiments for present-day conditions show that snow depth at the onset of melt, mean annual near-surface air temperature and the mean density of the annual snow layer are key factors controlling the quantity and spatial distribution of meltwater runoff above the equilibrium line on the Greenland ice sheet.

Document Type: Research Article

DOI: https://doi.org/10.3189/002214309790152537

Publication date: 2009-12-01

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.

    Beginning in 2016, content will be available at https://www.cambridge.org/core/journals/journal-of-glaciology.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more