If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Snow isotopic content change by sublimation

$37.91 plus tax (Refund Policy)

Buy Article:

Abstract:

We present results from cold-laboratory observations of changes in isotopic (18O and D) content by sublimation in snow and ice samples under nearly isothermal conditions. The results show large increases in observed 18O and D in snow samples within several centimeters of the surface. They contradict the assumption of a non-changing isotopic content due to layer-by-layer transport mechanisms driven by sublimation/desublimation processes. The data also do not support the idea that isotopic changes of snow and firn are limited by the possibility that the ice matrix incorporates the atmospheric water vapor and that forced water-vapor diffusion in the pore space (wind pumping) is a requirement for isotopic content change. The observations show that sublimation from ice samples results in much lower increases in heavy-isotope content in the first several millimetres near the sublimating surface over the same time period, despite sublimation intensities similar to those of the snow samples. The results suggest that continuous phase transitions inside snow (recrystallization) are the process responsible for the isotopic content change because they are the primary mass-exchange mechanism between the snow mass and the surrounding environment. Modeling the isotopic content of the ice matrix therefore requires inclusion of a two-stage process: fractionation at the ice-matrix surface due to repetitive phase transitions, and fractionation due to preferable diffusion of light water isotopes in the pore space. For interpretation of the observed natural isotopic profiles in snow, the first process can be linked to the time a snow layer undergoes recrystallization, while the second process is related to the total ice/snow mass gain/loss determined by the external environmental conditions.

Document Type: Research Article

DOI: http://dx.doi.org/10.3189/002214309790152456

Publication date: December 1, 2009

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more