Skip to main content

Temperature and vapour-trajectory controls on the stable-isotope signal in Canadian Rocky Mountain snowpacks

Buy Article:

$35.11 plus tax (Refund Policy)


The effects of temperature and seasonal air-mass trajectories on stable water isotopes in alpine snowpacks are investigated using meteorological and snow-pit data at two alpine field sites in the Canadian Rocky Mountains: Haig Glacier, Alberta, and Opabin Glacier, British Columbia. Snow pits were sampled through three accumulation seasons (October–June, 2004/05, 2005/06 and 2006/07) for 18O, D, temperature and density. The isotopic characteristics of precipitation over these time periods, including the local meteoric waterline and average 18O, D and deuterium excess, were defined using this dataset. Individual snowfall events over the three seasons were identified in the accumulation records from both sites and then fit to snow-pit stratigraphies to determine their mean isotopic characteristics. A trajectory classification was produced for all events, and the key meteorological characteristics of each trajectory class were investigated using data from alpine field sites and a suite of meteorological records from the region. An analysis of the relative influences of temperature and air-mass trajectory on snow isotope ratios reveals some separation in mean 18O between storm classes. However, the separation appears to be driven primarily by the mean temperature of each class rather then being a direct effect of vapour pathway.

Document Type: Research Article


Publication date: June 1, 2009

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more