Skip to main content

Composition and origin of amber ice and its influence on the behaviour of cold glaciers in the McMurdo Dry Valleys, Antarctica

Buy Article:

$35.11 plus tax (Refund Policy)


This paper examines the basal ice sequence of Rhone Glacier, a cold-based glacier in the McMurdo Dry Valleys, Antarctica, using isotopic and solute chemistry data. Three different ice facies are identified: englacial, amber and stratified. The englacial facies is clean, bubbly ice of meteoric origin and is underlain by an amber facies. Amber ice is a characteristic of cold alpine glaciers in the McMurdo Dry Valleys and is distinctive for its high solute concentrations and much higher strain rates compared with the overlying englacial ice and the underlying stratified ice. Analysis of the stratified facies reveals an isotopic signature indicative of melt then refreeze processes and it is most likely associated with apron entrainment at the margin. By contrast, the amber facies has a co-isotopic slope of 8 and plots on a meteoric waterline. The inclusion of impurities in the amber ice reveals prolonged contact with the bed, and its depleted isotopic signature is consistent with ice formed during a cooler period. Comparison of the basal sequence of Rhone Glacier with other cold-based glaciers in the McMurdo Dry Valleys reveals strong similarities between valley-side glaciers (e.g. Meserve and Rhone Glaciers), whereas valley-floor glacier basal sequences (e.g. Suess Glacier) are characterized by structurally complex amalgamations of ice and debris.

Document Type: Research Article


Publication date: 2009-04-01

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more