Skip to main content

Airborne and spaceborne DEM- and laser altimetry-derived surface elevation and volume changes of the Bering Glacier system, Alaska, USA, and Yukon, Canada, 1972–2006

Buy Article:

$35.11 plus tax (Refund Policy)

Abstract:

Using airborne and spaceborne high-resolution digital elevation models and laser altimetry, we present estimates of interannual and multi-decadal surface elevation changes on the Bering Glacier system, Alaska, USA, and Yukon, Canada, from 1972 to 2006. We find: (1) the rate of lowering during 1972–95 was 0.9±0.1 m a−1; (2) this rate accelerated to 3.0±0.7 m a−1 during 1995–2000; and (3) during 2000–03 the lowering rate was 1.5±0.4 m a−1. From 1972 to 2003, 70% of the area of the system experienced a volume loss of 191±17 km3, which was an area-average surface elevation lowering of 1.7±0.2 m a−1. From November 2004 to November 2006, surface elevations across Bering Glacier, from McIntosh Peak on the south to Waxell Ridge on the north, rose as much as 53 m. Up-glacier on Bagley Ice Valley about 10 km east of Juniper Island nunatak, surface elevations lowered as much as 28 m from October 2003 to October 2006. NASA Terra/MODIS observations from May to September 2006 indicated muddy outburst floods from the Bering terminus into Vitus Lake. This suggests basal–englacial hydrologic storage changes were a contributing factor in the surface elevation changes in the fall of 2006.

Document Type: Research Article

DOI: http://dx.doi.org/10.3189/002214309788608750

Publication date: April 1, 2009

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • ingentaconnect is not responsible for the content or availability of external websites
igsoc/jog/2009/00000055/00000190/art00011
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more